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Abstract. The concept of a wave field is introduced to represent oriented media. The wave field
is a tensor field of second rank, and directors are its eigenvectors. This exhibition of directors
defines a natural gauge group inherent in continua and allows one to derive from a variational
principle general relativistic and gauge-invariant equations for the wave field in question. Thus,
the gauge-theoretical approach to a continuum with internal degrees of freedom gives rise to an
unambiguous and minimally coupled theory.

1. Introduction

In generalized continuum mechanics dealing with oriented media the fundamental structure
is a set of vectors adjoined to each point of a medium. These vectors which can deform
independently of the displacements of points of the media are called directors. They define a
microstructure of the continuum. In the theory of spinning fluids, the name ‘tetrads’ is also
used. At present, this part of mechanical science is fairly well accepted and is widely applied
for the description of media possessing internal degrees of freedom.

There exists an extended literature on continua with internal degrees of freedom, see, for
example, Cosserat and Cosserat [1], Weyssenhoff and Raabe [2], Maugin and Eringen [3],
Halbwachs [4], Minkevich and Karakura [5], Berman [6], Moffatt [7], Holz [8] and references
therein. The gauge-theoretical point of view is stressed by Kleinert [9]. In the theory of elastic
continua with defects the gauge approach was successfully used by Osipov [10]. The theory
of spinning fluids in generalized spacetime manifolds was developed by Ray and Smally [11]
as an extension of the theory of spinning fluids in special relativity. The Cosserat brothers
were the first to introduce the notion of a 3-tuple of unit rigid directors and laid down the
mathematical foundations of the theory now known as the Cosserat continuum.

The goal of the present paper is to formulate the most general gauge-theoretical approach
to the theory of oriented media. To do this, the notion of a wave field is introduced to represent
generalized continua. The wave field is characterized so as to define directors and other
properties of the system in question, in particular, the form of interaction of this matter with
the gravitational field. The wave field allows one to derive a minimally coupled and simple
theory from first principles which has a fundamental meaning in contemporary physics.
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2. Formulation of the problem

The key idea of the present consideration is that directors are defined as solutions of the
eigenvalue problem of the form

�i
jh
j = λhi (1)

where the matrix �i
j , is a tensor field of the type (1, 1) and, at the same time, the wave field

of oriented media. The internal state of media is then characterized by the number of linear
independent eigenvectors (directors) hi which define the type of microstructure of continua.
Now, the problem is to derive a wave equation for the field �i

j from first principles.
We remark that equations (1) are invariant under the transformations

�̄i
j = Sik�

k
l T

l
j (2)

h̄i = Sijh
j (3)

where Sij are components of the tensor field S of type (1, 1) that satisfy the condition
det(Sij ) �= 0. In this case, there exists an inverse transformation S−1 with components T ij
such that Sik T

k
j = δij . It is evident that substitutions (2) form a local group of transformations,

and equations for the field � should be invariant with respect to this gauge symmetry group.
As is well known, the matrix � can be reduced by a gauge transformation to the canonical or
Jordan form defined by the characteristic equation

|�i
j − λδij | = 0.

The Einstein general covariance is the other deep guiding principle that we have at our
disposal. In this framework, the wave equation for � is, in fact, defined uniquely.

The most direct and simplest way to derive a gauge-invariant wave equation is to give a
correct definition of the gauge-covariant derivative. Denote it by Di and let

Di�
j

k = ∂i�
j

k +Gj

il�
l
k −�

j

l G
l
ik

D̄i�̄
j

k = ∂i�̄
j

k + Ḡj

il�̄
l
k − �̄

j

l Ḡ
l
ik

where Gj

ik and Ḡj

ik are gauge potentials connected with wave fields � and �̄, respectively.
For brevity, we will use the matrix notation

� = (�i
j ) Gi = (G

j

ik) S = (Sij ) S−1 = (T ij ) Tr(�) = �i
i

in which

Di� = ∂i� + [Gi,�] Ḡi�̄ = ∂i�̄ + [Ḡi, �̄] �̄ = S�S−1. (4)

From the condition

D̄i�̄ = S(Di�)S
−1 (5)

and (4) one derives the law of transformation of the gauge potential

Ḡi = SGiS
−1 + S∂iS

−1. (6)

To derive a general covariant Lagrangian of first order for �, it is natural to take Di�
j

k to be
a tensor. Of course, the second gauge-covariant derivative should not be a tensor, but if we
deal with the general covariant Lagrangian of first order, then by varying it we will obtain a
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combination of gauge-covariant derivatives such that equation of second order will be a tensor
equation.

Let

x̃i = x̃i (x0, x1, x2, x3) xi = xi(x̃0, x̃1, x̃2, x̃3)

be the coordinate transformations. Put

X =
(
∂x̃i

∂xj

)
X−1 =

(
∂xi

∂x̃j

)

then the gauge potential transforms as follows:

G̃i = XGkX
−1 ∂x

k

∂x̃i
+X

∂

∂x̃i
X−1.

Since the tensor field � transforms under gauge and coordinate transformations by the
law �̄ = S�S−1, �̃ = X�X−1, the traces �i

i = Tr(�) and �i
j�

j

i = Tr(� �) are evidently
invariants of the gauge group and scalars with respect to the general coordinate transformations.
It is known from the theory of linear operators that there also exist other invariants, but in what
follows we will only use these simplest ones.

To obtain an expression for the tensor of strength of the gauge field, consider the
commutator of covariant derivatives [Di, Dj ]. From (4) it follows that

[Di, Dj ]� = [Hij , �] (7)

where

Hij = ∂iGj − ∂jGi + [Gi, Gj ] (8)

is the strength tensor of the gauge field with the following properties:

H̄ij = SHijS
−1 [Di, Dj ]Hkl = [Hij , Hkl]. (9)

From (8) it follows thatHk
ijl is a tensor of the type (1, 3)with respect to the general coordinate

transformation.

3. Gauge-invariant equations

Now we have all that is required to derive the simplest general covariant and gauge-invariant
equations for fields Gi and �. In what follows gij are the Einstein gravitational potentials,
gij are components of the tensor inverse to gij , gilgjl = δij . As is known, the determinant
|gij | �= 0, actually allows one to obtain, for the tensor field gij , the equations invariant under the
general coordinate transformations. By analogy, let us consider the case when the determinant
|�i

j | �= 0. Under this condition the field � is inverse and the nonlinear gauge-invariant
equations can be suggested. This means that we consider the case of nonlinear continuum
mechanics with internal degrees of freedom. The linear case can be considered then as an
approximation.

Thus, the gauge-invariant and general covariant Lagrangian of first order has the form

L = − 1
2a Tr(Di�D

i�−1)− 1
4b Tr(HijH

ij ) (10)

where a and b are constants,

Di = gijDj and Hij = gikgjlHkl.
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The gauge potential has the dimension of cm−1, � is dimensionless. Taking into account that

δ� = −�(δ�−1)�

and varying (10) with respect to� andGi, we obtain the following equations of second order
for the basic fields:

Di

(√|g|�−1Di�
) = 0 (11)

Di

(√|g|Hij
) =

√
|g|J j (12)

where |g| is the absolute value of the determinant of the matrix (gij ) and

J i = [�−1,Di�].

According to (9),

DiDj

(√|g|Hij
) = 0.

Hence, as a result of (12), the tensor current J has to satisfy the equation

Di

(√|g|J i) = 0.

Since this is really so, the system of equations (11) and (12) is compatible.
Varying the Lagrangian (10) with respect to gij , we obtain the gauge-invariant metric

tensor of energy–momentum of oriented media

Tij = a Tr(Di�Dj�
−1) + b Tr(HikH

k
j ) + gijL

which satisfies the equation

T ij ;i = 0. (13)

The semicolon denotes the covariant derivative with respect to the Levi-Civita connection
belonging to the field gij{

i

jk

}
= 1

2g
il(∂jgkl + ∂kgjl − ∂lgjk).

When deriving (13), besides equations (11) and (12), one should use the standard relations
[12] for the Christoffel symbols {ijk} and the identity

DiHjk +DjHki +DkHij = 0

which can easily be obtained with the help of relation (7). From (13) and the gauge invariance
of the metric tensor of energy–momentum it follows that the Einstein equations

Rij − 1
2gijR = G

c3
Tij

derived from the Lagrangian Lf = Lg + L, where Lg = (c3/G)R is the Einstein–Hilbert
Lagrangian, will be compatible. Thus, it is shown that the continuum gravitates.

In the linear approximation �i
j = δij +Mi

j , we have from (11) the following equation for
the matrix M = (Mi

j ):

Di

(√|g|DiM
) = 0. (14)

We will say that the continuum admits elastic deformations if the vector field V i exists such
that

DiV
j = 0. (15)
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If equation (15) has a non-trivial solution, then from (14) and (15) it follows that the vector
field Ui = Mi

kV
k obeys the equation

Di

(√|g|DiUj
) = 0 (16)

that can be considered as a general covariant and gauge-covariant analogue of the known
equation of elastic deformations of media.

It is worthwhile to pay attention to some special cases connected with the gauge group.
First of all, the consideration of rigid directors or generalized Cosserat continua means the
reduction of the gauge group defined by the condition

SikS
j

l gij = gkl.

Secondly, for a given vector field ui a reduction of the gauge group is given by the relation

Siju
j = ui.

In the absence of a gravitational field we setgij = diag(1, −1, −1, −1). Finally, consider
a gauge-invariant state in question. A state (�,Hij ) is said to be a singlet if it is invariant under
all the symmetry transformations. In our case a singlet state is given by the equations

� = S�S−1 Hij = SHijS
−1

to be satisfied at any S. The first equation has the solution

� = eαE �−1 = e−αE

where α is a scalar field. In this case all directions are interchangeable. If the gauge field obeys
the equation Hij = SHijS

−1, it also obeys the equation Hij = 1
4Fij E, where Fij = TrHij .

Thus, a singlet state is represented by the scalar field and 2-form Fij dxi ∧ dxj . To derive
the equation for the scalar field consider the following gauge-invariant quantity: � = |�i

j |. If
� obeys equation (11), then taking the trace of both sides of this equation we obtain that the
invariant � satisfies the equation

∂i
(√|g|gij ∂j ln |�|) = 0.

Thus, one can derive that α must satisfy the equation

∂i
(√|g|gij ∂jα

) = 0.

From (12) it follows that the bivector Fij satisfies the equations

∂i
(√|g|F ij ) = 0

which coincide formally with the free Maxwell equations. This analogy can be prolonged
since from (8) it follows that Fij = ∂iQj − ∂jQi , where Qi = trGi = Gk

ik . According to
(6) and the differentiation rules for determinants, the transformation law for Qi under gauge
transformations has the form

Q̄i = Qi − ∂i ln |D|

where D = det(Sij ).
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4. Conclusion

Let us outline the main principles of the gauge approach to the continua with internal degrees
of freedom. In the proposed theory directors are not fundamental objects and are treated as
solutions of the algebraic equation (1) at a given matrix� which is a wave field corresponding
to the continuum in question and defines all the important quantities of the oriented media.
The field� is deduced from equations (11) and (12). The gravitational interactions of oriented
media are described by the Einstein equations with the energy–momentum tensor of continua
given by equation (13). For the equations presented, the gauge invariance holds necessarily in
the sense that if � and Gi are solutions then

�̄ = S�S−1 Ḡi = SGiS
−1 + S∂iS

−1

are solutions as well, where S is any non-degenerate tensor field of the type (1, 1).
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